Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Nucleic Acids Res ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38567720

RESUMO

In mice, transcription from the zygotic genome is initiated at the mid-one-cell stage, and occurs promiscuously in many areas of the genome, including intergenic regions. Regulated transcription from selected genes is established during the two-cell stage. This dramatic change in the gene expression pattern marks the initiation of the gene expression program and is essential for early development. We investigated the involvement of the histone variants H3.1/3.2 in the regulation of changes in gene expression pattern during the two-cell stage. Immunocytochemistry analysis showed low nuclear deposition of H3.1/3.2 in the one-cell stage, followed by a rapid increase in the late two-cell stage. Where chromatin structure is normally closed between the one- and two-cell stages, it remained open until the late two-cell stage when H3.1/3.2 were knocked down by small interfering RNA. Hi-C analysis showed that the formation of the topologically associating domain was disrupted in H3.1/3.2 knockdown (KD) embryos. Promiscuous transcription was also maintained in the late two-cell stage in H3.1/3.2 KD embryos. These results demonstrate that H3.1/3.2 are involved in the initial process of the gene expression program after fertilization, through the formation of a closed chromatin structure to execute regulated gene expression during the two-cell stage.

2.
Blood ; 2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38493479

RESUMO

Chimeric antigen receptor (CAR)-redirected immune cells hold significant therapeutic potential for oncology, autoimmune diseases, transplant medicine, and infections. All approved CAR-T therapies rely on personalized manufacturing using undirected viral gene transfer, which results in non-physiological regulation of CAR-signaling and limits their accessibility due to logistical challenges, high costs and biosafety requirements. Random gene transfer modalities pose a risk of malignant transformation by insertional mutagenesis. Here, we propose a novel approach utilizing CRISPR-Cas gene editing to redirect T-cells and natural killer (NK) cells with CARs. By transferring shorter, truncated CAR-transgenes lacking a main activation domain into the human CD3ζ (CD247) gene, functional CAR fusion-genes are generated that exploit the endogenous CD3ζ gene as the CAR's activation domain. Repurposing this T/NK-cell lineage gene facilitated physiological regulation of CAR-expression and redirection of various immune cell types, including conventional T-cells, TCRγ/δ T-cells, regulatory T-cells, and NK-cells. In T-cells, CD3ζ in-frame fusion eliminated TCR surface expression, reducing the risk of graft-versus-host disease in allogeneic off-the-shelf settings. CD3ζ-CD19-CAR-T-cells exhibited comparable leukemia control to T cell receptor alpha constant (TRAC)-replaced and lentivirus-transduced CAR-T-cells in vivo. Tuning of CD3ζ-CAR-expression levels significantly improved the in vivo efficacy. Notably, CD3ζ gene editing enabled redirection of NK-cells without impairing their canonical functions. Thus, CD3ζ gene editing is a promising platform for the development of allogeneic off-the-shelf cell therapies using redirected killer lymphocytes.

3.
Cureus ; 16(1): e52521, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38371033

RESUMO

A 72-year-old man with end-stage renal failure, receiving 220 mg of dabigatran for chronic atrial fibrillation, was admitted with generalized edema and shortness of breath. Cardiac tamponade caused by pericardial hemorrhage due to inappropriate dabigatran use was treated with pericardial drainage and idarucizumab. Although coagulability normalized, consecutive duodenal hemorrhages occurred, requiring arterial embolization for hemostasis. In cases of severely impaired renal function, the usual dose of idarucizumab may not be sufficient to reverse the effects of dabigatran. Therefore, we considered the need for repeated idarucizumab administration to prevent recurrent bleeding.

4.
Proc Natl Acad Sci U S A ; 120(51): e2310053120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38096412

RESUMO

Systemic infections can yield distinct outcomes in different tissues. In mice, intravenous inoculation of Escherichia coli leads to bacterial replication within liver abscesses, while other organs such as the spleen clear the pathogen. Abscesses are macroscopic necrotic regions that comprise the vast majority of the bacterial burden in the animal, yet little is known about the processes underlying their formation. Here, we characterize E. coli liver abscesses and identify host determinants of abscess susceptibility. Spatial transcriptomics revealed that liver abscesses are associated with heterogenous immune cell clusters comprised of macrophages, neutrophils, dendritic cells, innate lymphoid cells, and T-cells that surround necrotic regions of the liver. Abscess susceptibility is heightened in the C57BL lineage, particularly in C57BL/6N females. Backcross analyses demonstrated that abscess susceptibility is a polygenic trait inherited in a sex-dependent manner without direct linkage to sex chromosomes. As early as 1 d post infection, the magnitude of E. coli replication in the liver distinguishes abscess-susceptible and abscess-resistant strains of mice, suggesting that the immune pathways that regulate abscess formation are induced within hours. We characterized the early hepatic response with single-cell RNA sequencing and found that mice with reduced activation of early inflammatory responses, such as those lacking the LPS receptor TLR4 (Toll-like receptor 4), are resistant to abscess formation. Experiments with barcoded E. coli revealed that TLR4 mediates a tradeoff between abscess formation and bacterial clearance. Together, our findings define hallmarks of E. coli liver abscess formation and suggest that hyperactivation of the hepatic innate immune response drives liver abscess susceptibility.


Assuntos
Infecções por Escherichia coli , Abscesso Hepático , Feminino , Camundongos , Animais , Escherichia coli/metabolismo , Receptor 4 Toll-Like/metabolismo , Imunidade Inata/genética , Camundongos Endogâmicos C57BL , Linfócitos/metabolismo , Abscesso Hepático/genética
5.
bioRxiv ; 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38116030

RESUMO

Chimeric antigen receptor (CAR)-reprogrammed immune cells hold significant therapeutic potential for oncology, autoimmune diseases, transplant medicine, and infections. All approved CAR-T therapies rely on personalized manufacturing using undirected viral gene transfer, which results in non-physiological regulation of CAR-signaling and limits their accessibility due to logistical challenges, high costs and biosafety requirements. Here, we propose a novel approach utilizing CRISPR-Cas gene editing to redirect T cells and natural killer (NK) cells with CARs. By transferring shorter, truncated CAR-transgenes lacking a main activation domain into the human CD3 ζ (CD247) gene, functional CAR fusion-genes are generated that exploit the endogenous CD3 ζ gene as the CAR's activation domain. Repurposing this T/NK-cell lineage gene facilitated physiological regulation of CAR-expression and reprogramming of various immune cell types, including conventional T cells, TCRγ/δ T cells, regulatory T cells, and NK cells. In T cells, CD3 ζ in-frame fusion eliminated TCR surface expression, reducing the risk of graft-versus-host disease in allogeneic off-the-shelf settings. CD3 ζ-CD19-CAR-T cells exhibited comparable leukemia control to T cell receptor alpha constant ( TRAC )-replaced and lentivirus-transduced CAR-T cells in vivo . Tuning of CD3 ζ-CAR-expression levels significantly improved the in vivo efficacy. Compared to TRAC -edited CAR-T cells, integration of a Her2-CAR into CD3 ζ conveyed similar in vitro tumor lysis but reduced susceptibility to activation-induced cell death and differentiation, presumably due to lower CAR-expression levels. Notably, CD3 ζ gene editing enabled reprogramming of NK cells without impairing their canonical functions. Thus, CD3 ζ gene editing is a promising platform for the development of allogeneic off-the-shelf cell therapies using redirected killer lymphocytes. Key points: Integration of ζ-deficient CARs into CD3 ζ gene allows generation of functional TCR-ablated CAR-T cells for allogeneic off-the-shelf use CD3 ζ-editing platform allows CAR reprogramming of NK cells without affecting their canonical functions.

6.
Cancer Res ; 83(24): 4047-4062, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38098451

RESUMO

Identifying novel cell surface receptors that regulate leukemia cell differentiation and can be targeted to inhibit cellular proliferation is crucial to improve current treatment modalities in acute myeloid leukemia (AML), especially for relapsed or chemotherapy-refractory leukemia. Leukocyte immunoglobulin-like receptor type B (LILRB) is an immunomodulatory receptor originally found to be expressed in myeloid cells. In this study, we found that LILRB receptors can be induced under inflammatory stimuli and chemotherapy treatment conditions. Blockade of LILRB3 inhibited leukemia cell proliferation and leukemia progression. In addition, treatment with LILRB3 blocking antibodies upregulated myeloid lineage differentiation transcription factors, including PU.1, C/EBP family, and IRF, whereas phosphorylation of proliferation regulators, for example, AKT, cyclin D1, and retinoblastoma protein, was decreased. Conversely, transcriptomic analysis showed LILRB3 activation by agonist antibodies may enhance leukemia survival through upregulation of cholesterol metabolism, which has been shown to promote leukemia cell survival. Moreover, LILRB3-targeted CAR T cells exhibited potent antitumor effects both in vitro and in vivo. Taken together, our results suggest that LILRB3 is a potentially potent target for multiple treatment modalities in AML. SIGNIFICANCE: LILRB3 regulates differentiation and proliferation in acute myeloid leukemia and can be targeted with monoclonal antibodies and CAR T cells to suppress leukemia growth.


Assuntos
Imunoterapia Adotiva , Leucemia Mieloide Aguda , Humanos , Imunoterapia Adotiva/métodos , Linfócitos T , Leucemia Mieloide Aguda/patologia , Receptores de Superfície Celular/metabolismo , Células Mieloides/metabolismo , Receptores Imunológicos/metabolismo , Antígenos CD/metabolismo
7.
bioRxiv ; 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37398354

RESUMO

Systemic infections can yield distinct outcomes in different tissues. In mice, intravenous inoculation of E. coli leads to bacterial replication within liver abscesses while other organs such as the spleen largely clear the pathogen. Abscesses are macroscopic necrotic regions that comprise the vast majority of the bacterial burden in the animal, yet little is known about the processes underlying their formation. Here, we characterize E. coli liver abscesses and identify host determinants of abscess susceptibility. Spatial transcriptomics revealed that liver abscesses are associated with heterogenous immune cell clusters comprised of macrophages, neutrophils, dendritic cells, innate lymphoid cells, and T-cells that surround necrotic regions of the liver. Susceptibility to liver abscesses is heightened in the C57BL/6 lineage, particularly in C57BL/6N females. Backcross analyses demonstrated that abscess susceptibility is a polygenic trait inherited in a sex-dependent manner without direct linkage to sex chromosomes. As early as one day post infection, the magnitude of E. coli replication in the liver distinguishes abscess-susceptible and abscess-resistant strains of mice, suggesting that the immune pathways that regulate abscess formation are induced within hours. We characterized the early hepatic response with single-cell RNA sequencing and found that mice with reduced activation of early inflammatory responses, such as those lacking the LPS receptor TLR4, are resistant to abscess formation. Experiments with barcoded E. coli revealed that TLR4 mediates a tradeoff between abscess formation and bacterial clearance. Together, our findings define hallmarks of E. coli liver abscess formation and suggest that hyperactivation of the hepatic innate immune response drives liver abscess susceptibility.

8.
Proc Natl Acad Sci U S A ; 120(15): e2300817120, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37014864

RESUMO

Mammals exhibit systemic homochirality of amino acids in L-configurations. While ribosomal protein synthesis requires rigorous chiral selection for L-amino acids, both endogenous and microbial enzymes convert diverse L-amino acids to D-configurations in mammals. However, it is not clear how mammals manage such diverse D-enantiomers. Here, we show that mammals sustain systemic stereo dominance of L-amino acids through both enzymatic degradation and excretion of D-amino acids. Multidimensional high performance liquidchromatography analyses revealed that in blood, humans and mice maintain D-amino acids at less than several percent of the corresponding L-enantiomers, while D-amino acids comprise ten to fifty percent of the L-enantiomers in urine and feces. Germ-free experiments showed that vast majority of D-amino acids, except for D-serine, detected in mice are of microbial origin. Experiments involving mice that lack enzymatic activity to catabolize D-amino acids showed that catabolism is central to the elimination of diverse microbial D-amino acids, whereas excretion into urine is of minor importance under physiological conditions. Such active regulation of amino acid homochirality depends on maternal catabolism during the prenatal period, which switches developmentally to juvenile catabolism along with the growth of symbiotic microbes after birth. Thus, microbial symbiosis largely disturbs homochirality of amino acids in mice, whereas active host catabolism of microbial D-amino acids maintains systemic predominance of L-amino acids. Our findings provide fundamental insight into how the chiral balance of amino acids is governed in mammals and further expand the understanding of interdomain molecular homeostasis in host-microbial symbiosis.


Assuntos
Aminoácidos , Simbiose , Humanos , Animais , Camundongos , Aminoácidos/química , Serina , Biossíntese de Proteínas , Estereoisomerismo , Mamíferos
9.
J Reprod Dev ; 69(3): 178-182, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37062716

RESUMO

Linker histone variants regulate higher-order chromatin structure and various cellular processes. It has been suggested that linker histone variant H1a loosens chromatin structure and activates transcription. However, its role in early mouse development remains to be elucidated. We investigated the functions of H1a during preimplantation development using H1a gene-deleted mice. Although H1a homozygous knockout (KO) mice were born without any abnormalities, the number of offspring were reduced when the mothers but not fathers were homozygous KO animals. Maternal H1a KO compromised development during the morula and blastocyst stages, but not differentiation of the inner cell mass or trophectoderm. Thus, maternal linker histone H1a is important in early development.


Assuntos
Blastocisto , Histonas , Camundongos , Animais , Histonas/genética , Desenvolvimento Embrionário/genética , Mórula , Cromatina
10.
Sci Adv ; 9(13): eade6790, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36989357

RESUMO

We show that a binary oncolytic/helper-dependent adenovirus (CAdVEC) that both lyses tumor cells and locally expresses the proinflammatory cytokine IL-12 and PD-L1 blocking antibody has potent antitumor activity in humanized mouse models. On the basis of these preclinical studies, we treated four patients with a single intratumoral injection of an ultralow dose of CAdVEC (NCT03740256), representing a dose of oncolytic adenovirus more than 100-fold lower than used in previous trials. While CAdVEC caused no significant toxicities, it repolarized the tumor microenvironment with increased infiltration of CD8 T cells. A single administration of CAdVEC was associated with both locoregional and abscopal effects on metastases and, in combination with systemic administration of immune checkpoint antibodies, induced sustained antitumor responses, including one complete and two partial responses. Hence, in both preclinical and clinical studies, CAdVEC is safe and even at extremely low doses is sufficiently potent to induce significant tumor control through oncolysis and immune repolarization.


Assuntos
Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Camundongos , Animais , Terapia Viral Oncolítica/efeitos adversos , Adenoviridae/genética , Neoplasias/patologia , Citocinas , Linhagem Celular Tumoral , Microambiente Tumoral
11.
J Dev Biol ; 11(1)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36976099

RESUMO

The sexual fate of honeybees is determined by the complementary sex determination (CSD) model: heterozygosity at a single locus (the CSD locus) determines femaleness, while hemizygosity or homozygosity at the CSD locus determines maleness. The csd gene encodes a splicing factor that regulates sex-specific splicing of the downstream target gene feminizer (fem), which is required for femaleness. The female mode of fem splicing occurs only when csd is present in the heteroallelic condition. To gain insights into how Csd proteins are only activated under the heterozygous allelic composition, we developed an in vitro assay system to evaluate the activity of Csd proteins. Consistent with the CSD model, the co-expression of two csd alleles, both of which lack splicing activity under the single-allele condition, restored the splicing activity that governs the female mode of fem splicing. RNA immunoprecipitation quantitative PCR analyses demonstrated that the CSD protein was specifically enriched in several exonic regions in the fem pre-mRNA, and enrichment in exons 3a and 5 was significantly greater under the heterozygous allelic composition than the single-allelic condition. However, in most cases csd expression under the monoallelic condition was capable of inducing the female mode of fem splicing contrary to the conventional CSD model. In contrast, repression of the male mode of fem splicing was predominant under heteroallelic conditions. These results were reproduced by real-time PCR of endogenous fem expression in female and male pupae. These findings strongly suggest that the heteroallelic composition of csd may be more important for the repression of the male splicing mode than for the induction of the female splicing mode of the fem gene.

12.
Cell ; 186(5): 893, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36868210

RESUMO

Enhanced by polyamide surfactant Syn3, intravesical administration of rAd-IFNα2b results in transduction of the virus into the bladder epithelium, resulting in the synthesis and expression of local IFNα2b cytokine. Upon secretion, IFNα2b binds to the IFNα receptor on bladder cancer and other cells, resulting in signaling via the JAK-STAT pathway. A plethora of induced IFN-stimulated genes containing IFN-sensitive response elements that contribute to activation of pathways restrict cancer growth.


Assuntos
Janus Quinases , Neoplasias da Bexiga Urinária , Humanos , Fatores de Transcrição STAT , Transdução de Sinais , Adenoviridae , Interferon-alfa , Terapia Genética
14.
Sci Total Environ ; 857(Pt 1): 159208, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36208746

RESUMO

To mitigate radioactive cesium from soil to plant, increasing and maintaining the exchangeable potassium (ExK) level during growth is widely accepted after Tokyo Electric Company's Fukushima Dai-ichi Nuclear Plant accident in Japan. This is because the antagonistic relationship between soil solution K and 134Cs + 137Cs (RCs) concentrations changes the transfer factor (TF: designated as the ratio of radioactivity of plant organ to soil) of RCs. As the relationship between ExK and TF depends on the soil types, crop species, and other environmental factors, the required amount of ExK should be set to a safe side. Eleven years after the accident, as the activity of 134Cs was almost negligible, 137Cs became the main RCs in most of the agricultural fields in Fukushima Prefecture. We propose a new indicator, the concentration ratio of plant 137Cs to soil exchangeable 137Cs (Ex137Cs), instead of TF, which showed a better correlation with ExK even among soils with different properties (or mineralogy).


Assuntos
Acidente Nuclear de Fukushima , Monitoramento de Radiação , Poluentes Radioativos do Solo , Poluentes Radioativos do Solo/análise , Solo , Radioisótopos de Césio/análise , Plantas , Japão
15.
DNA Repair (Amst) ; 117: 103370, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35863142

RESUMO

Mammalian zygotes are hypersensitive to radiation exposure compared with later-stage embryos and somatic cells, which may be due to an unusual DNA damage response (DDR). DNA damage checkpoints are an essential part of the DDR, allowing for faithful replication of cells. Although the DDR and radiosensitivity of somatic cells are dependent on the cell cycle phase, it remains largely unclear how the irradiation of zygotes at different phases affects cell cycle progression and preimplantation development. Here, mouse zygotes were irradiated with 10 Gy γ-rays at all four cell cycle phases. DNA damage checkpoints were activated by γ-irradiation at the G2 phase, but not at the G1, S, and M phases. The absence of DNA damage checkpoints at the G1 and M phases seems to be due to the low abundance of phosphorylated CHK2, which plays a key role in checkpoint activation in response to ionizing radiation. The cause of the inoperative S phase checkpoint may lie downstream of CHK2 activation. The inactive DNA damage checkpoints at the G1 and S phases contributed to micronucleus formation in the subsequent 2-cell stage, whereas irradiation at the M phase led to the highest incidence of chromatin bridges. The low developmental rates of embryos irradiated at the G1, S, and M phases suggest that embryos with these two types of chromatin abnormalities are prone to developmental failure. Taken together, these results suggest that the radiosensitivity of zygotes can be ascribed to a defective DDR at the G1, S, and M phases.


Assuntos
Dano ao DNA , Zigoto , Animais , Ciclo Celular , Divisão Celular , Cromatina , Mamíferos , Camundongos , Tolerância a Radiação
16.
Reproduction ; 164(2): 19-29, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35666814

RESUMO

In brief: In oocytes, chromatin structure is loosened during their growth, which seems to be essential for the establishment of competence to accomplish the maturation and further development after fertilization. This paper shows that a linker histone variant, H1foo, is involved in the formation of loosened chromatin structure in growing oocytes. Abstract: During oogenesis, oocytes show a unique mode of division and gene expression patterns. Chromatin structure is thought to be involved in the regulation of these processes. In this study, we investigated the functions of linker histones, which modulate higher-order chromatin structure during oogenesis. Because H1foo is highly expressed in oocytes, we knocked down H1foo using siRNA and observed oocyte growth, maturation, and fertilization. However, H1foo knockdown had no effect on any of these processes. Overexpression of H1b or H1d, which has a high ability to condense chromatin and is expressed at a low level in oocytes, resulting in tightened chromatin and a decreased success rate of oocyte maturation. By contrast, overexpression of H1a, which is expressed at a high level in oocytes and has a low ability to compact chromatin, did not affect growth or maturation. Therefore, H1a, but not other variants, might compensate for the function of H1foo in H1foo-knockdown oocytes. These results implicate H1foo in the formation of loose chromatin structure, which is necessary for oocyte maturation. In addition, the low expression of somatic linker histone variants, for example, H1b and H1d, is important for loosened chromatin and meiotic progression.


Assuntos
Histonas , Oogênese , Cromatina/genética , Cromatina/metabolismo , Histonas/metabolismo , Oócitos/metabolismo , Oogênese/genética
17.
Cancers (Basel) ; 14(11)2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35681750

RESUMO

For decades, Adenoviruses (Ads) have been staple cancer gene therapy vectors. Ads are highly immunogenic, making them effective adjuvants. These viruses have well characterized genomes, allowing for substantial modifications including capsid chimerism and therapeutic transgene insertion. Multiple generations of Ad vectors have been generated with reduced or enhanced immunogenicity, depending on their intended purpose, and with increased transgene capacity. The latest-generation Ad vector is the Helper-dependent Ad (HDAd), in which all viral coding sequences are removed from the genome, leaving only the cis-acting ITRs and packaging sequences, providing up to 34 kb of transgene capacity. Although HDAds are replication incompetent, their innate immunogenicity remains intact. Therefore, the HDAd is an ideal cancer gene therapy vector as its infection results in anti-viral immune stimulation that can be enhanced or redirected towards the tumor via transgene expression. Co-infection of tumor cells with an oncolytic Ad and an HDAd results in tumor cell lysis and amplification of HDAd-encoded transgene expression. Here, we describe an HDAd-based cancer gene therapy expressing multiple classes of immunomodulatory molecules to simultaneously stimulate multiple axes of immune pathways: the HydrAd. Overall, the HydrAd platform represents a promising cancer immunotherapy agent against complex solid tumors.

18.
Nutrients ; 14(10)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35631146

RESUMO

This systematic review and meta-analysis elucidate the effects of the Japanese-style diet and characteristic Japanese foods on the mortality risk of cardiovascular disease (CVD), cerebrovascular disease (stroke), and heart disease (HD). This review article followed the PRISMA guidelines. A systematic search in PubMed, The Cochrane Library, JDreamIII, and ICHUSHI Web identified prospective cohort studies on Japanese people published till July 2020. The meta-analysis used a random-effects model, and heterogeneity and publication bias were evaluated with I2 statistic and Egger's test, respectively. Based on inclusion criteria, we extracted 58 articles, including 9 on the Japanese-style diet (n = 469,190) and 49 (n = 2,668,238) on characteristic Japanese foods. With higher adherence to the Japanese-style diet, the pooled risk ratios (RRs) for CVD, stroke, heart disease/ischemic heart disease combined (HD/IHD) mortality were 0.83 (95% CI, 0.77-0.89, I2 = 58%, Egger's test: p = 0.625, n = 9 studies), 0.80 (95% CI, 0.69-0.93, I2 = 66%, Egger's test: p = 0.602, n = 6 studies), and 0.81 (95% CI, 0.75-0.88, I2 = 0%, Egger's test: p = 0.544, n = 6 studies), respectively. Increased consumption of vegetables, fruits, fish, green tea, and milk and dairy products decreased the RR for CVD, stroke, or HD mortality. Increased salt consumption elevated the RR for CVD and stroke mortality. Increased consumption of dietary fiber and plant-derived protein decreased the RR for CVD, stroke, and HD/IHD mortality. The Japanese-style diet and characteristic Japanese foods may reduce CVD mortality. Most studies conducted diet surveys between 1980 and the 1990s. This meta-analysis used articles that evaluated the same cohort study by a different method. A new large-scale cohort study matching the current Japanese dietary habits is needed to confirm these findings.


Assuntos
Doenças Cardiovasculares , Cardiopatias , Acidente Vascular Cerebral , Animais , Estudos de Coortes , Dieta , Humanos , Japão/epidemiologia , Leite , Estudos Prospectivos
20.
Ann Nucl Med ; 36(6): 544-552, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35303274

RESUMO

OBJECTIVE: Both myocardial perfusion scintigraphy and 18F-fluorodeoxyglucose positron emission tomography (FDG PET) are useful for the diagnosis of cardiac sarcoidosis (CS). However, the association between the washout of 99mTc-labeled tracer and FDG PET has not been established. This study aimed to evaluate the association between the washout of 99mTc-labeled tracer and FDG PET findings in patients with CS. METHODS: We retrospectively analyzed 64 patients (65.0 ± 11.2 years, 53% male) with suspected CS who underwent myocardial single-photon emission computed tomography (SPECT) with 99mTc-labeled tracer and FDG PET. The SPECT images were acquired at 15 min (early images) and 3 h (delayed images) after injection and scored visually using a 17-segment model with a 5-point scoring system. The washout score was defined as the difference between the early and delayed total defect scores. FDG positivity was considered as focal or focal on diffuse patterns on visual assessment, and FDG uptake was quantified by measuring the standardized uptake value (SUV) of each of the 17 segments. RESULTS: The washout score was significantly higher for the CS group than for the non-CS group (3.0 [-1.0-5.0] vs. 0.0 [-0.5-1.0], p = 0.010). Receiver operating characteristic analysis showed that a washout score of ≥ 2 had the best accuracy for detecting CS (88% sensitivity and 56% specificity) and FDG positivity (71% sensitivity and 89% specificity). In the segment-based analysis of 833 segments from 49 patients, excluding 15 patients with diffuse FDG uptake, the median SUVs for FDG uptake for the washout scores of ≤ 0, 1, and 2 were 2.3 (1.8-3.6), 4.2 (2.9-7.8), and 8.3 (6.5-9.4), respectively (p < 0.001). CONCLUSIONS: The washout of 99mTc-labeled tracer can be a useful marker for the evaluation of FDG PET findings in patients with CS.


Assuntos
Miocardite , Sarcoidose , Feminino , Fluordesoxiglucose F18 , Humanos , Inflamação , Masculino , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Estudos Retrospectivos , Sarcoidose/diagnóstico por imagem , Sensibilidade e Especificidade , Tecnécio Tc 99m Sestamibi , Tomografia Computadorizada de Emissão de Fóton Único/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...